Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YRS_1)}(2) \setminus P_{f(4CHU_1)}(2)|=73\),
\(|P_{f(4CHU_1)}(2) \setminus P_{f(6YRS_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101000110100001101111110010100110010001111001011111111101011000110010000001100011000011011011010011101000011011101111111101110011001001001010100111100000011111110100111101101100001101111000110110111110101100011100100011111111101111111010000101010011110110111011000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{432
}{\log_{20}
432}-\frac{163}{\log_{20}163})=79.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YRS_1
4CHU_1
96
77
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]