Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YKG_1)}(2) \setminus P_{f(1NNB_1)}(2)|=113\),
\(|P_{f(1NNB_1)}(2) \setminus P_{f(6YKG_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000110110001010010000011001001100001010110000101110011000100000011101000100000110011001010110010011011101011010001011000000101000111010010000111011011011000010010011010000000010001000110010100001100111010011110000011010010001001110010000011001010111000000000001000010101100100111010001011001111000110011011011000010000000010111100001010010111111010101011110010110010111011100001100111100100100001110110110011000010101010011100000111011010111101100010100110001100011011010110001000110011001111100010011100010110101101110010111111010001101111000000001000000111010000011101101110101101110100010010001010100001100100110001011111110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1023
}{\log_{20}
1023}-\frac{387}{\log_{20}387})=168.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YKG_1
1NNB_1
217
173.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]