Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YIM_1)}(2) \setminus P_{f(2UWO_1)}(2)|=51\),
\(|P_{f(2UWO_1)}(2) \setminus P_{f(6YIM_1)}(2)|=132\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01000110100100111101011000010011100110101111100101100110100100010010000110010011111001110000000100100011011000101110011
Pair
\(Z_2\)
Length of longest common subsequence
6YIM_1,2UWO_1
183
3
6YIM_1,3ATN_1
144
3
2UWO_1,3ATN_1
199
3
Newick tree
[
2UWO_1:10.24,
[
6YIM_1:72,3ATN_1:72
]:30.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{373
}{\log_{20}
373}-\frac{119}{\log_{20}119})=77.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YIM_1
2UWO_1
99
72
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]