Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YHR_1)}(2) \setminus P_{f(6ACW_1)}(2)|=146\),
\(|P_{f(6ACW_1)}(2) \setminus P_{f(6YHR_1)}(2)|=53\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100000001111110000100101011000101101011001100000011111010100101001110110111110111011000110101001110111010000110010110001101010000101111001010111011110010010011001000100110100111111111101010001000110010100101000110010101010000101100101111000001010110110010001000101010010100100011101000001000110001001110111111100101001100111001000000110110011000001111110101000110010000101001011101000100000000111001000010010111110000000000010000010000000101110110110110111001111111111010000011000000011101000000110110001100111101000001101011000100110010000001110100010100111100001001000000001001010
Pair
\(Z_2\)
Length of longest common subsequence
6YHR_1,6ACW_1
199
4
6YHR_1,6QER_1
168
5
6ACW_1,6QER_1
199
5
Newick tree
[
6ACW_1:10.15,
[
6YHR_1:84,6QER_1:84
]:20.15
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{883
}{\log_{20}
883}-\frac{298}{\log_{20}298})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YHR_1
6ACW_1
208
155
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]