Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YCA_1)}(2) \setminus P_{f(5WGL_1)}(2)|=71\),
\(|P_{f(5WGL_1)}(2) \setminus P_{f(6YCA_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110101011110000001001100101100010000110111011111111111110011011001111101011111000001101111001101110011111000001110111000100111010111010100111000110111000100010000111101100111111011101011111000111010110110110100110110110101100101010001000101100010010100111000010011110110101101101110110011101100101111111000011011010111110000011111101000111001101010000100000010101011111010111001001001111010011110110111001001111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{779
}{\log_{20}
779}-\frac{364}{\log_{20}364})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YCA_1
5WGL_1
136
132.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]