Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6XAQ_1)}(2) \setminus P_{f(1YXH_1)}(2)|=82\),
\(|P_{f(1YXH_1)}(2) \setminus P_{f(6XAQ_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000100111111100010000100100101110000101010110100101000110100100111001001000110000111010101010110001010100100101010111010000010010010101000100110111100110011010101011000111001110001001000
Pair
\(Z_2\)
Length of longest common subsequence
6XAQ_1,1YXH_1
140
3
6XAQ_1,3CAW_1
165
4
1YXH_1,3CAW_1
201
3
Newick tree
[
3CAW_1:98.17,
[
6XAQ_1:70,1YXH_1:70
]:28.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{315
}{\log_{20}
315}-\frac{126}{\log_{20}126})=58.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
6XAQ_1
1YXH_1
72
61
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]