Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6XAD_1)}(2) \setminus P_{f(1QCY_1)}(2)|=98\),
\(|P_{f(1QCY_1)}(2) \setminus P_{f(6XAD_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000000011000010101111001011110100000011010011110111001101100101011110010000100101100000001001100001011110000110101111011111010101000111100000110010010000111001101010111010110100010011100100000000101100111011010011100001101011111011010111111111101110000001100111010001110011001110011110010000100111010110
Pair
\(Z_2\)
Length of longest common subsequence
6XAD_1,1QCY_1
146
4
6XAD_1,4JLJ_1
161
6
1QCY_1,4JLJ_1
163
3
Newick tree
[
4JLJ_1:83.49,
[
6XAD_1:73,1QCY_1:73
]:10.49
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{498
}{\log_{20}
498}-\frac{193}{\log_{20}193})=88.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
6XAD_1
1QCY_1
110
89
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]