Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6WRR_1)}(2) \setminus P_{f(7ODQ_1)}(2)|=105\),
\(|P_{f(7ODQ_1)}(2) \setminus P_{f(6WRR_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100110100011011010000001101110000010000011101001101110011000100011111001110000010001100111011100000111100110100110011101100011100111001010110011111101100000010101010100111101100101111100100111111110011100010000101000111001100100111110000000100010001000100010111000000010111001010011011111000101111110101100000101000110111011111110100010001001101101100110011111001100111110000001001100110011111000
Pair
\(Z_2\)
Length of longest common subsequence
6WRR_1,7ODQ_1
164
4
6WRR_1,2YTV_1
203
3
7ODQ_1,2YTV_1
173
3
Newick tree
[
2YTV_1:98.05,
[
6WRR_1:82,7ODQ_1:82
]:16.05
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{752
}{\log_{20}
752}-\frac{352}{\log_{20}352})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6WRR_1
7ODQ_1
142
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]