Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VSH_1)}(2) \setminus P_{f(6KFW_1)}(2)|=70\),
\(|P_{f(6KFW_1)}(2) \setminus P_{f(6VSH_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100110111110010001110011001111000101111111010100111100111101010010011010111001001010110110101001111000111111110111101111101100101100011101010000011100110110100100101000110010001111010101110111101011110110110011011001010010111011111101010000100010011010001000011100001110010101110010101110000111011000010101011011110000111010001001001011010000000
Pair
\(Z_2\)
Length of longest common subsequence
6VSH_1,6KFW_1
149
6
6VSH_1,2CHU_1
149
4
6KFW_1,2CHU_1
146
4
Newick tree
[
6VSH_1:74.99,
[
6KFW_1:73,2CHU_1:73
]:1.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{759
}{\log_{20}
759}-\frac{349}{\log_{20}349})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VSH_1
6KFW_1
137
127.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]