6VQZ_1|Chains A, C|MHC class I antigen|Homo sapiens (9606)
>9FZT_1|Chain A|Glucose-6-phosphate isomerase|Candida albicans (5476)
>7GPE_1|Chains A, B|Protease 3C|Human Enterovirus D68 (42789)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VQZ_1)}(2) \setminus P_{f(9FZT_1)}(2)|=56\),
\(|P_{f(9FZT_1)}(2) \setminus P_{f(6VQZ_1)}(2)|=128\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010010001001101010110110100011101000110100010111100011001000001001010000001001100000001100010010100111010110100001001000111000100101100110100001011011001010101001011000100100010010110001000110000101001111101101010100010000000011000111000100111111101000000001000111011010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{831
}{\log_{20}
831}-\frac{276}{\log_{20}276})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VQZ_1
9FZT_1
193
144
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]