Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VQI_1)}(2) \setminus P_{f(3HPF_1)}(2)|=80\),
\(|P_{f(3HPF_1)}(2) \setminus P_{f(6VQI_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111011100000001001011000000111000101101011010111110001101011101110011001101100000010001110110110010010101100110001001001110110010001000101000101010010000110110001101100001110000110111111010000110000011011110000110000000100101100110010001000011100100000010100001001000000011111011010100111111010110111001100111101011110100001001001100100010001111101110111101000000101000100011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{773
}{\log_{20}
773}-\frac{382}{\log_{20}382})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VQI_1
3HPF_1
130
129
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]