Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VNH_1)}(2) \setminus P_{f(4PJW_1)}(2)|=31\),
\(|P_{f(4PJW_1)}(2) \setminus P_{f(6VNH_1)}(2)|=152\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000000001010101001000010110011010110101000011000010111100100000001001000101100100001100011000110001011100110101000100000010010110000010011001100001000110001110000010110111001110000000100110011110110010000101100110111110011001000001110110111000010111101101100010110101010010111000100010001010011101001000111
Pair
\(Z_2\)
Length of longest common subsequence
6VNH_1,4PJW_1
183
4
6VNH_1,6TSB_1
164
3
4PJW_1,6TSB_1
167
5
Newick tree
[
4PJW_1:89.37,
[
6VNH_1:82,6TSB_1:82
]:7.37
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1289
}{\log_{20}
1289}-\frac{308}{\log_{20}308})=257.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VNH_1
4PJW_1
329
213.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]