Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VKZ_1)}(2) \setminus P_{f(3HQY_1)}(2)|=101\),
\(|P_{f(3HQY_1)}(2) \setminus P_{f(6VKZ_1)}(2)|=91\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100100110010011101001001011101100000001000011001001001010100110101010010101000001010000100000100000011001000010001110100110010000101011000100011011000111010011011010010010011011010010100101011100001100100111100100010001110001001110110010110001010100010101000001000101011101100100001000100011110100000011001001000000010001100111110101010110000111001000101110100011001000000111101100000011101100100100101000011101110001000110010101100001010
Pair
\(Z_2\)
Length of longest common subsequence
6VKZ_1,3HQY_1
192
4
6VKZ_1,6GEW_1
156
5
3HQY_1,6GEW_1
174
4
Newick tree
[
3HQY_1:95.71,
[
6VKZ_1:78,6GEW_1:78
]:17.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{821
}{\log_{20}
821}-\frac{380}{\log_{20}380})=118.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VKZ_1
3HQY_1
153
141
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]