Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6UZA_1)}(2) \setminus P_{f(6AEK_1)}(2)|=64\),
\(|P_{f(6AEK_1)}(2) \setminus P_{f(6UZA_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011000000101000011011001011110011000001010010011001101111000101001110000100110111111001010110111001111010011001000010000101000010010001011111100000011001100110100100010000000000000010000001010011101101010000111011010001111101000100000010100001111110100000010111010100100100101010010111000100111010000011011000101100001110111111111111111110111100011011011110111011010111111110110010100111000000010011010000101101111011111111000011001100011011011011111111101110111110100100110100010010010110010000110101010010110011011111101001101111000111101011001001101111111111111111101000011100001100100010011111111001001110000011001101101100101111110111111000100100010101011010111001001001111101110100110111010011001101000110001010010000011111000010010100001100001010000010100100110000011001100011010100000010010100100010010001100000000011011001100101010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1585
}{\log_{20}
1585}-\frac{738}{\log_{20}738})=210.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6UZA_1
6AEK_1
271
251
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]