Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6URU_1)}(2) \setminus P_{f(1RKW_1)}(2)|=156\),
\(|P_{f(1RKW_1)}(2) \setminus P_{f(6URU_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001010011001110110010001111010100011110111011010001011001011100101011001110011010100010111011111010101010000011010101000100101011000000011101111110000100001100010000001111011011110111001001101101001001101111111010101010010101010101001010101100010111111011001001100100010010000110011101010000101000100000101010100110010101101000101110010001111100010010001000000010111101111000001110001100001001001101000111110101100101011100100101000001011100011000010110111001111000101100000111100111110001100010100110011001000010010001010100110110011000111101000011000010
Pair
\(Z_2\)
Length of longest common subsequence
6URU_1,1RKW_1
181
6
6URU_1,8TYX_1
193
3
1RKW_1,8TYX_1
132
3
Newick tree
[
6URU_1:10.07,
[
1RKW_1:66,8TYX_1:66
]:35.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{754
}{\log_{20}
754}-\frac{194}{\log_{20}194})=156.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6URU_1
1RKW_1
195
128.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]