Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6UNP_1)}(2) \setminus P_{f(5WNJ_1)}(2)|=81\),
\(|P_{f(5WNJ_1)}(2) \setminus P_{f(6UNP_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000100101010110111001010100101101110100111001010001111011011000011000010011110000110111100010101010011110001010100010100001100001100100111010001101000011100001000011100010011001110101010011011000011100110100111011011101000001100101011111010111000011110011000111000110010100101110000001011011000011100100010001100101010100100011011111000001010101100110000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{705
}{\log_{20}
705}-\frac{342}{\log_{20}342})=99.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6UNP_1
5WNJ_1
123
119
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]