Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ULW_1)}(2) \setminus P_{f(2XZS_1)}(2)|=168\),
\(|P_{f(2XZS_1)}(2) \setminus P_{f(6ULW_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010000000010111001000110000100111100000101010010011100010001110110000111111011111001101010011001001100110000110011000001000010101010011011011110110111101000011101111011111110110111000010111001001101100111100001100101111110000101111011101000011011110001111100100111001000000111010101110010000101011110011111110110100100010100001110110110110000100011101111110000001001010101100110110111100100110111101101011011111001001111011100100001110100001000101101000101010011011111010110000011100011010101100101000000100011010111001011110010101010000111101000000010111001111000111100101010100011111010100110110100010001100111010011110001110000101001010001001010011101010100000110100000111111011000111011111011111001001100000010101101100100001110100100000110010001101001101100000000101001001000101011110011010000111011000110110001001001001111011000111101001010110010000011111101000000011100011001111111010000000011100011011011111110110001100001011111000001100000001011000101011011000101010001011100001110001011101111100011101001010010010101011100110000011110000100101110111001100110011000010001010010101100111001011011100010111000111001110110011110011000000100110101010000010111000000110001000100010001010011011100010000010100101001100011010001100000011101100110100100100111111001010011011000011011111110000110110110001010011110111001010
Pair
\(Z_2\)
Length of longest common subsequence
6ULW_1,2XZS_1
180
4
6ULW_1,9FEV_1
148
6
2XZS_1,9FEV_1
162
3
Newick tree
[
2XZS_1:89.15,
[
6ULW_1:74,9FEV_1:74
]:15.15
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1639
}{\log_{20}
1639}-\frac{312}{\log_{20}312})=340.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ULW_1
2XZS_1
432
264
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]