Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6TWE_1)}(2) \setminus P_{f(5PUK_1)}(2)|=91\),
\(|P_{f(5PUK_1)}(2) \setminus P_{f(6TWE_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111001100111000111110100101100100101001110011101011011111111100000001100110110001010001100000100010001101001100101011111100101100010001011000110011111101100001100110101100
Pair
\(Z_2\)
Length of longest common subsequence
6TWE_1,5PUK_1
164
3
6TWE_1,8OMP_1
164
3
5PUK_1,8OMP_1
158
3
Newick tree
[
6TWE_1:82.97,
[
5PUK_1:79,8OMP_1:79
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{328
}{\log_{20}
328}-\frac{156}{\log_{20}156})=52.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
6TWE_1
5PUK_1
68
63.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]