Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6TBE_1)}(2) \setminus P_{f(4RQN_1)}(2)|=79\),
\(|P_{f(4RQN_1)}(2) \setminus P_{f(6TBE_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100110000011000001001000010011111000010001111000011110010100110110001010100111111000011010011101000000001110110100001
Pair
\(Z_2\)
Length of longest common subsequence
6TBE_1,4RQN_1
120
3
6TBE_1,2VGC_1
104
3
4RQN_1,2VGC_1
68
2
Newick tree
[
6TBE_1:61.78,
[
2VGC_1:34,4RQN_1:34
]:27.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{190
}{\log_{20}
190}-\frac{71}{\log_{20}71})=39.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
6TBE_1
4RQN_1
49
39
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]