Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SWP_1)}(2) \setminus P_{f(8FSY_1)}(2)|=62\),
\(|P_{f(8FSY_1)}(2) \setminus P_{f(6SWP_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011010001000011100110000110111100110101111000001100110100100010000000100111010111000000011000111110010011010010110
Pair
\(Z_2\)
Length of longest common subsequence
6SWP_1,8FSY_1
134
3
6SWP_1,1XFY_1
211
5
8FSY_1,1XFY_1
207
4
Newick tree
[
1XFY_1:11.30,
[
6SWP_1:67,8FSY_1:67
]:47.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{244
}{\log_{20}
244}-\frac{115}{\log_{20}115})=41.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SWP_1
8FSY_1
52
49.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]