Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6STM_1)}(2) \setminus P_{f(1WIS_1)}(2)|=59\),
\(|P_{f(1WIS_1)}(2) \setminus P_{f(6STM_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001001111101000000001001111100101000110011000100101000100100000100111000011100111001001010111101010010000111011110101010001100010010010110000000011010011110001110001100
Pair
\(Z_2\)
Length of longest common subsequence
6STM_1,1WIS_1
124
4
6STM_1,6XPN_1
158
3
1WIS_1,6XPN_1
158
3
Newick tree
[
6XPN_1:83.90,
[
6STM_1:62,1WIS_1:62
]:21.90
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{294
}{\log_{20}
294}-\frac{124}{\log_{20}124})=52.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6STM_1
1WIS_1
55
51.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]