6SNB_1|Chain A|Capsid protein VP1|Coxsackievirus A10 (42769)
>2VZP_1|Chains A, B|EXO-BETA-D-GLUCOSAMINIDASE|AMYCOLATOPSIS ORIENTALIS (31958)
>7JXN_1|Chains A, B, C, D|Amyloid-beta 17-36 peptide|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SNB_1)}(2) \setminus P_{f(2VZP_1)}(2)|=131\),
\(|P_{f(2VZP_1)}(2) \setminus P_{f(6SNB_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001100110001001100100100111011000010010111101100110001000011000011000111010100110001111110100110000101110101111101000001100101010101100000101011110010111111010100110100100101110100111010111101101001100101011001000000010010011101110110011001010001010100101111011000101100110000001000100010100101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{425
}{\log_{20}
425}-\frac{127}{\log_{20}127})=89.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SNB_1
2VZP_1
117
79
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]