Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SMC_1)}(2) \setminus P_{f(4MPR_1)}(2)|=77\),
\(|P_{f(4MPR_1)}(2) \setminus P_{f(6SMC_1)}(2)|=104\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100101011111111011111101000101101010101110010100001000010100000011110100101010011011000000110010000111000001110001100100001100011000101000111000101010100000010001100111010100101000000000100000100101000111011101000000000000111001101011001010110000101010010010010001010111010000001000001000011111000000100011010101000000000001101100100100000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{880
}{\log_{20}
880}-\frac{344}{\log_{20}344})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SMC_1
4MPR_1
177
146
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]