Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SGD_1)}(2) \setminus P_{f(6IRF_1)}(2)|=25\),
\(|P_{f(6IRF_1)}(2) \setminus P_{f(6SGD_1)}(2)|=164\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010000110011010010000100000101111001001010010001110010110010010110000011000000101110000110110110010000001000111011001011100000000110011000101101110100010110111101100000110011101001010010010000000110110110010111111011000011101001010011000000100110011010000010100110011110000000
Pair
\(Z_2\)
Length of longest common subsequence
6SGD_1,6IRF_1
189
5
6SGD_1,1UOW_1
170
4
6IRF_1,1UOW_1
233
3
Newick tree
[
6IRF_1:11.22,
[
6SGD_1:85,1UOW_1:85
]:27.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1126
}{\log_{20}
1126}-\frac{279}{\log_{20}279})=225.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SGD_1
6IRF_1
285
187
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]