Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SBI_1)}(2) \setminus P_{f(7UVE_1)}(2)|=91\),
\(|P_{f(7UVE_1)}(2) \setminus P_{f(6SBI_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000001111010110001110100001001011010000011000110011011001101100010010010001100111110100101101011111100001000101111110010111011110011101101010100100000001111011001000011011110001101011011101010100010000111011011001001101001011101010111110000010111011101010100000
Pair
\(Z_2\)
Length of longest common subsequence
6SBI_1,7UVE_1
184
3
6SBI_1,6QWO_1
170
3
7UVE_1,6QWO_1
180
4
Newick tree
[
7UVE_1:92.92,
[
6SBI_1:85,6QWO_1:85
]:7.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{522
}{\log_{20}
522}-\frac{257}{\log_{20}257})=75.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SBI_1
7UVE_1
94
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]