Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6SBG_1)}(2) \setminus P_{f(3OCS_1)}(2)|=103\),
\(|P_{f(3OCS_1)}(2) \setminus P_{f(6SBG_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011000000001101010010001011111110100101110010110110110011010110111011010100111011011010000101011000110101000111101111111000001001011110010101111011000101010110110101011011000101111111010001000101000001010101100000001101011111101100101001111110010101111000010100110110101111001010101101111111100001010110010101101100010011010000010100110101110000110010110011011111
Pair
\(Z_2\)
Length of longest common subsequence
6SBG_1,3OCS_1
186
3
6SBG_1,3GDN_1
142
4
3OCS_1,3GDN_1
180
4
Newick tree
[
3OCS_1:97.39,
[
6SBG_1:71,3GDN_1:71
]:26.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{638
}{\log_{20}
638}-\frac{271}{\log_{20}271})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6SBG_1
3OCS_1
129
113
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]