Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6RYV_1)}(2) \setminus P_{f(1OSZ_1)}(2)|=144\),
\(|P_{f(1OSZ_1)}(2) \setminus P_{f(6RYV_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011100010000110011110001011000001110100100100010010100001000011000100100100000110111000100101000110111100001000000110001000101000001101011011001010101000000000011001001011011011001111000010010110010111010110110111111110111001010011110010001101101100110001101110000100000011011100100101110110010010100110001001101011010000001001011011110010011001010011101100111101011100000111000001111110010110111000001011010101101100000011011111001111011011101000001100010100110100110100110111101110111110101110110010111000011111011010000100111111100000101111010110111110110011000110000100001011011011000100110111011010110111010101011010101111011010001000000111010101000010110001111110001110010101011001011111000110000100110000000
Pair
\(Z_2\)
Length of longest common subsequence
6RYV_1,1OSZ_1
178
4
6RYV_1,1AKI_1
225
5
1OSZ_1,1AKI_1
201
3
Newick tree
[
1AKI_1:11.94,
[
6RYV_1:89,1OSZ_1:89
]:22.94
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{988
}{\log_{20}
988}-\frac{274}{\log_{20}274})=192.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6RYV_1
1OSZ_1
243
166.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]