Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6RPR_1)}(2) \setminus P_{f(8BNY_1)}(2)|=63\),
\(|P_{f(8BNY_1)}(2) \setminus P_{f(6RPR_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001000101110010001011010000000001101010000100111000111010101101101111111100011001110100011010010011100010011100110
Pair
\(Z_2\)
Length of longest common subsequence
6RPR_1,8BNY_1
133
3
6RPR_1,1FGB_1
131
3
8BNY_1,1FGB_1
122
4
Newick tree
[
6RPR_1:67.58,
[
1FGB_1:61,8BNY_1:61
]:6.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{277
}{\log_{20}
277}-\frac{116}{\log_{20}116})=50.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
6RPR_1
8BNY_1
62
54.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]