Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6RNV_1)}(2) \setminus P_{f(4CNL_1)}(2)|=149\),
\(|P_{f(4CNL_1)}(2) \setminus P_{f(6RNV_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010101110110011110100111001101111000100100110010111010011010100110101110010110011011100111001110011001010010110001101111011100100010000011111010100001110111111101101011001100111110101100101000001001101001000100001111001011011001110001111001111100010110100011100111111010100011010110000010011100101010000010011010001111110000000
Pair
\(Z_2\)
Length of longest common subsequence
6RNV_1,4CNL_1
181
3
6RNV_1,8SXD_1
164
4
4CNL_1,8SXD_1
179
4
Newick tree
[
4CNL_1:92.51,
[
6RNV_1:82,8SXD_1:82
]:10.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{512
}{\log_{20}
512}-\frac{182}{\log_{20}182})=95.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6RNV_1
4CNL_1
125
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]