Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6RGT_1)}(2) \setminus P_{f(8HUF_1)}(2)|=112\),
\(|P_{f(8HUF_1)}(2) \setminus P_{f(6RGT_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110110010001010010000001100100101011101010000001000111110010001010100011011011101110011000001011010110001001010101010011000000001010110101101000101101100000011111000000100010011000101010100101100100011010101101001010011000010101010011001110001100100011000010101010011000100101111000101110001100010001
Pair
\(Z_2\)
Length of longest common subsequence
6RGT_1,8HUF_1
174
3
6RGT_1,8WUY_1
180
4
8HUF_1,8WUY_1
166
4
Newick tree
[
6RGT_1:90.27,
[
8HUF_1:83,8WUY_1:83
]:7.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{518
}{\log_{20}
518}-\frac{216}{\log_{20}216})=86.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6RGT_1
8HUF_1
112
94.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]