Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6QVD_1)}(2) \setminus P_{f(6TFM_1)}(2)|=218\),
\(|P_{f(6TFM_1)}(2) \setminus P_{f(6QVD_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000001100011100100001110000001110001110001000111000101001010000010000001111000100001000000000000001001101100011001111111111111101010010100101001001010101110111110111111110111001101011101110100110111100010101111011110111101111100111101101011110011011011000100000110110111110011011111110101000011100010111110101111011111000110101110001010111010011111111100111111110100011111000011001110001101111011110101111110111101110011001100001100110100110011110101011111111111011101110011110111111111111110111011111110111100110011111011111111011100010011101010101101111111111101110010101000110100110110111001000011100111001011010000101001100001001111000001111101000010111000101000101100110010011001010111011111111010011110000000101000111011101000111010010111110000101101110010110011001110101000000000001100101001011000010011010000100011011000010000011011110110100110101111100100110100001101011110100000000001111001001011000111010101111010011101010111011110101010010110011100011011011010000000000111
Pair
\(Z_2\)
Length of longest common subsequence
6QVD_1,6TFM_1
239
3
6QVD_1,6FYF_1
148
4
6TFM_1,6FYF_1
195
3
Newick tree
[
6TFM_1:11.45,
[
6QVD_1:74,6FYF_1:74
]:44.45
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1126
}{\log_{20}
1126}-\frac{138}{\log_{20}138})=269.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6QVD_1
6TFM_1
334
190
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]