Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6QSI_1)}(2) \setminus P_{f(2BSM_1)}(2)|=134\),
\(|P_{f(2BSM_1)}(2) \setminus P_{f(6QSI_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100100011000110011101100011110111001001111001111111011111010111101011110101111100110000111101100100111101111010110110111010101101001101100110110011011101011000110111111001100011011110110100110011110011111110101000001110110010111111101000111000101011111111110001100011111111110000111100111100110100011011011110111101100101111111000010101111111100111110100110110011100110100000011111001010011000111111111111111110110100011111101010011011101100011111111001001110111111010011110111101011101011001010000111011001111001111011010101
Pair
\(Z_2\)
Length of longest common subsequence
6QSI_1,2BSM_1
188
4
6QSI_1,5NQZ_1
162
4
2BSM_1,5NQZ_1
136
3
Newick tree
[
6QSI_1:93.39,
[
5NQZ_1:68,2BSM_1:68
]:25.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{763
}{\log_{20}
763}-\frac{235}{\log_{20}235})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6QSI_1
2BSM_1
182
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]