Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6PXZ_1)}(2) \setminus P_{f(1HZA_1)}(2)|=67\),
\(|P_{f(1HZA_1)}(2) \setminus P_{f(6PXZ_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110110011010001101000100101000000101010001100111111110110010011001010110000100110011001001001011111000
Pair
\(Z_2\)
Length of longest common subsequence
6PXZ_1,1HZA_1
108
3
6PXZ_1,8RHK_1
179
3
1HZA_1,8RHK_1
151
3
Newick tree
[
8RHK_1:90.37,
[
6PXZ_1:54,1HZA_1:54
]:36.37
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{171
}{\log_{20}
171}-\frac{67}{\log_{20}67})=35.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
6PXZ_1
1HZA_1
44
36
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]