Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6PQO_1)}(2) \setminus P_{f(2LGX_1)}(2)|=270\),
\(|P_{f(2LGX_1)}(2) \setminus P_{f(6PQO_1)}(2)|=17\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001001101100001011100011000001000101110101011001000001000001001110011101010110010000010110010001001100110000100101110011010100101111101110110001101110000101010100100111110000000110111001101000001101110011101000010111011000100001010110010101101110010101101010011010110010001101110011001101110000101011000010000110010110000110011011101001000100111110101010110111001101010001100110101001011001010110100100111000001001100100011110100111101010000000001101110010100000110010000110010101101101110010001101110011111000011011001011100001011100010000010001001101110010101111110001011100001011011100000011101100001000101100001100011001100110010111010110000000000001000100100110100001000110011011011100001011001100001110111011010110110001111110111101011111000111000000001100000011000111111001110000110110000001101001101110001111111111011101010011111010110111010010001111111011100110001111111111110101110100110011101100101111010000011010100011011101101101011111111011111111011010001010011101010001000111111001000001101001001111101101110010100011010001010110000010010111000001101110010110000000000010001000010000001001101101000010100010111011110000000010000000000
Pair
\(Z_2\)
Length of longest common subsequence
6PQO_1,2LGX_1
287
3
6PQO_1,2YSK_1
265
4
2LGX_1,2YSK_1
124
3
Newick tree
[
6PQO_1:15.40,
[
2YSK_1:62,2LGX_1:62
]:93.40
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1264
}{\log_{20}
1264}-\frac{112}{\log_{20}112})=312.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6PQO_1
2LGX_1
392
214.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]