Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6OYW_1)}(2) \setminus P_{f(3RMD_1)}(2)|=21\),
\(|P_{f(3RMD_1)}(2) \setminus P_{f(6OYW_1)}(2)|=152\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000100000110000000001001111010011101100100010111001100000000110001110001000011001101000111011100111101011100011110000001110000110110010000110001010011100001110100110000111101000010101001110110011010101101101100110110101110011010111101111010101100101010111100101010001010011100110100000000101
Pair
\(Z_2\)
Length of longest common subsequence
6OYW_1,3RMD_1
173
5
6OYW_1,1EXA_1
156
3
3RMD_1,1EXA_1
185
4
Newick tree
[
3RMD_1:93.08,
[
6OYW_1:78,1EXA_1:78
]:15.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1200
}{\log_{20}
1200}-\frac{294}{\log_{20}294})=239.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6OYW_1
3RMD_1
306
201
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]