Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6OVT_1)}(2) \setminus P_{f(1UCV_1)}(2)|=182\),
\(|P_{f(1UCV_1)}(2) \setminus P_{f(6OVT_1)}(2)|=18\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000000011000010101111000001101001101010000100110011101110111100001101011110010010100101001101100111011101101101010011011001101011000111001011101001010111110000111111111010111111011011110101001000010110110111100011100101011001101101101110010011011011110111011111000000111000101110110011010011000110011111111110001110111110010111010010011011101101011100110010011111111011101111010010101001100111101101010110111011010111011010111011110011100011010101101001110110010101101111000110111110011110111011111001111001010110011011011101101111111001001010111011011101101100000101111000011100010110011111101
Pair
\(Z_2\)
Length of longest common subsequence
6OVT_1,1UCV_1
200
4
6OVT_1,7BHO_1
220
3
1UCV_1,7BHO_1
72
4
Newick tree
[
6OVT_1:11.58,
[
1UCV_1:36,7BHO_1:36
]:83.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{681
}{\log_{20}
681}-\frac{81}{\log_{20}81})=175.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6OVT_1
1UCV_1
208
117
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]