6NYN_1|Chains A, B, C, D, E, F, G, H, I, J, K, L|Vacuolating cytotoxin autotransporter|Helicobacter pylori (210)
>9HJO_1|Chains A, C|Fanconi anemia group M protein|Homo sapiens (9606)
>1AEC_1|Chain A|ACTINIDIN|Actinidia chinensis (3625)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NYN_1)}(2) \setminus P_{f(9HJO_1)}(2)|=142\),
\(|P_{f(9HJO_1)}(2) \setminus P_{f(6NYN_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100111111111110101110101111111001001000100100110101101100110000010001100010111011011000110110100101010011100010110010110101010010101101010010000001000001010100111001101000110111001000110101001100000101010011010110001010101111010011101110000100001010101001011000110111110000011010110011101111101100001000100011000000000000000110110000000101001101111110001101001000101010111101010001101011011101000101001110010101010111010001110111100101010111000010101000101101101010100101011001011100101011000101001101000111001010011100011011000010001100001001010010001101110100100111001000110010100100101000110001001110001110010110011100001001010101100010100110110110101101111110001001011001110100100110000011101011101010010011001010001000111000000100011000001010111110001100100000111011001110001010010100110001000110000110000001011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1055
}{\log_{20}
1055}-\frac{234}{\log_{20}234})=221.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NYN_1
9HJO_1
275
176.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]