Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NUC_1)}(2) \setminus P_{f(1HVA_1)}(2)|=115\),
\(|P_{f(1HVA_1)}(2) \setminus P_{f(6NUC_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001011010100000110111111000101001100010101011010110010100011101100110110000011010111010101010110110110111011000011110010010101001101111011010011110100000010001010000010000010010101100111111100011010111010100100100100100111011100111001100110000000100001010001000111001100001101101001001100100000001110110110110010100001111000001101001000101011101101101011111001001110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{632
}{\log_{20}
632}-\frac{260}{\log_{20}260})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NUC_1
1HVA_1
135
112.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]