Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NOY_1)}(2) \setminus P_{f(1DDN_1)}(2)|=111\),
\(|P_{f(1DDN_1)}(2) \setminus P_{f(6NOY_1)}(2)|=9\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100011001100001011100011000100010001000100011100001010011000000001000001010100100100010100010001001000001000011011010100010011011011000100001110000100100011
Pair
\(Z_2\)
Length of longest common subsequence
6NOY_1,1DDN_1
120
2
6NOY_1,6LHA_1
177
4
1DDN_1,6LHA_1
195
3
Newick tree
[
6LHA_1:10.77,
[
6NOY_1:60,1DDN_1:60
]:41.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{192
}{\log_{20}
192}-\frac{33}{\log_{20}33})=55.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NOY_1
1DDN_1
71
40.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]