Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NMO_1)}(2) \setminus P_{f(4YLU_1)}(2)|=49\),
\(|P_{f(4YLU_1)}(2) \setminus P_{f(6NMO_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101011010010011110111111101100011110001011101100111111111011001000010101100011100010011011111001000111011011101011010111010111001010100000110110101101011111100111
Pair
\(Z_2\)
Length of longest common subsequence
6NMO_1,4YLU_1
174
3
6NMO_1,5DLR_1
150
3
4YLU_1,5DLR_1
186
3
Newick tree
[
4YLU_1:94.53,
[
6NMO_1:75,5DLR_1:75
]:19.53
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{469
}{\log_{20}
469}-\frac{163}{\log_{20}163})=90.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NMO_1
4YLU_1
115
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]