6NMJ_1|Chains A, B|Resistance to inhibitors of cholinesterase 8 homolog A (C. elegans)|Rattus norvegicus (10116)
>1KWU_1|Chains A, B, C|MANNOSE-BINDING PROTEIN A|Rattus norvegicus (10116)
>3KGF_1|Chains A, B|Probable 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG|Mycobacterium tuberculosis (1773)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NMJ_1)}(2) \setminus P_{f(1KWU_1)}(2)|=134\),
\(|P_{f(1KWU_1)}(2) \setminus P_{f(6NMJ_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101110110010001100110010000000101001000000011011101100110100010110010110000001001100001011100101110001110110101110010010011100101011110101110110011100000010010110101111101100010001100101101100110101111100011111110000011011011101010010001000011100011011000111011100000101001011101110010111110100101011110101101111110001000001000111110110001010011001101011111001000101101100011011001000100111011111000011011000101011111110111111010100000000000000010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{602
}{\log_{20}
602}-\frac{149}{\log_{20}149})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NMJ_1
1KWU_1
162
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]