Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NJY_1)}(2) \setminus P_{f(1DNA_1)}(2)|=79\),
\(|P_{f(1DNA_1)}(2) \setminus P_{f(6NJY_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000000010100011010101010110101010110100111010011001001001001001111110010101111000111100010001000110011011011000111101101101010010110000101101011111001000000111101010000110010101001001000100011101101010101010011010111101101101011110011111010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{512
}{\log_{20}
512}-\frac{248}{\log_{20}248})=75.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NJY_1
1DNA_1
100
94.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]