Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NBY_1)}(2) \setminus P_{f(3ZPX_1)}(2)|=55\),
\(|P_{f(3ZPX_1)}(2) \setminus P_{f(6NBY_1)}(2)|=95\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110101011011001110001101111111111111110111111111000101110001110011111111111011011100011110000111011111111111100111111001110011111111111001111111111010000001111101110010001111111111111001110101100000011101011001111111111111000011101101000111100000111011110111010111011110110111101111100110111100001110111111110101101011111111101011010100110111011111111011101110111111111
Pair
\(Z_2\)
Length of longest common subsequence
6NBY_1,3ZPX_1
150
4
6NBY_1,6KBZ_1
178
4
3ZPX_1,6KBZ_1
190
3
Newick tree
[
6KBZ_1:97.06,
[
6NBY_1:75,3ZPX_1:75
]:22.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{830
}{\log_{20}
830}-\frac{372}{\log_{20}372})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NBY_1
3ZPX_1
154
138
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]