Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6MPQ_1)}(2) \setminus P_{f(5EQO_1)}(2)|=122\),
\(|P_{f(5EQO_1)}(2) \setminus P_{f(6MPQ_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000001100010010001111100100100010111010000111001011011111000010000110101000001110001011011110111100011000110110001001011000110010011111110101100101100110001110100000100111100101001010011111101011110111001010011101010100110101000100001001111
Pair
\(Z_2\)
Length of longest common subsequence
6MPQ_1,5EQO_1
184
3
6MPQ_1,5HSW_1
194
3
5EQO_1,5HSW_1
226
4
Newick tree
[
5HSW_1:10.38,
[
6MPQ_1:92,5EQO_1:92
]:17.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{366
}{\log_{20}
366}-\frac{121}{\log_{20}121})=74.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6MPQ_1
5EQO_1
94
71
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]