Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6MFW_1)}(2) \setminus P_{f(9FXV_1)}(2)|=126\),
\(|P_{f(9FXV_1)}(2) \setminus P_{f(6MFW_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011110011001001100100100011100001010010100101110010101100011001010110101011110010011110110001011010110001001011100011110000110000010011001110010011010111000011101010100010001010010011110010101001001100010011000101010011110010010000100010011001010110100011111000101110111110111101110100110011011100011111001100001011001101001000000000110100100110110001001110111100001101001001011101100111000101010110110011111110111000000101100000001101001101110011010000101110110110010001000100101100001110110100101011110110000111100111101111110111110111010100101010011101001001000100101110101011101001101010010110101111001110100111000101000111001110011010100111001100111001101011110101010001110101010111000111000100011011001111101110001100110010110110010011101000011001010010011000001010110010001000001100010110000100110011001011101000010111001110001100000101001100111010101100010000100111001011011011110111100100011110000111011000111001011110011011000000110100011100000001101001101011110110000110101011101001010100010101100010101111011011100100000011110100100010000111111001111101000001100100101011111000011100110110100010001110111110111000100010010111001010101100001101110000011001111011101001110110110001001011111001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1671
}{\log_{20}
1671}-\frac{461}{\log_{20}461})=305.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6MFW_1
9FXV_1
388
267
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]