Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6MEV_1)}(2) \setminus P_{f(3TGK_1)}(2)|=113\),
\(|P_{f(3TGK_1)}(2) \setminus P_{f(6MEV_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000100100010101000101000000001010111110010010110101001100000100111110100110100010100100000000100100001001010100010010000000110110000100100001100001101100011001100001100111111100101101011100110111010001011100010011010000110000011011011010001101110101101100110011111111011101000111000110000111110001010101000100110000101111100101000011100
Pair
\(Z_2\)
Length of longest common subsequence
6MEV_1,3TGK_1
186
3
6MEV_1,5XTK_1
174
3
3TGK_1,5XTK_1
160
3
Newick tree
[
6MEV_1:93.15,
[
5XTK_1:80,3TGK_1:80
]:13.15
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{572
}{\log_{20}
572}-\frac{231}{\log_{20}231})=97.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
6MEV_1
3TGK_1
127
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]