Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6MEL_1)}(2) \setminus P_{f(3DBM_1)}(2)|=53\),
\(|P_{f(3DBM_1)}(2) \setminus P_{f(6MEL_1)}(2)|=109\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011100000111011010010101000110100111110100110001101110011011010010101111111111001101101110111110000110011110001000110111100111100000011111111100101111000101000110011011011001111110111111000110010000000111111011101010110110001001111111110110100110111111010001110001100011011001111100100111001010
Pair
\(Z_2\)
Length of longest common subsequence
6MEL_1,3DBM_1
162
4
6MEL_1,8AMW_1
170
4
3DBM_1,8AMW_1
162
4
Newick tree
[
8AMW_1:83.68,
[
6MEL_1:81,3DBM_1:81
]:2.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{768
}{\log_{20}
768}-\frac{295}{\log_{20}295})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6MEL_1
3DBM_1
164
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]