Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6LTN_1)}(2) \setminus P_{f(9NLE_1)}(2)|=132\),
\(|P_{f(9NLE_1)}(2) \setminus P_{f(6LTN_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011000110011100100101011010111001100111111111101111001011001001010010100111100001111000001000010111110011101111111110111111011111010001011100100100011011001001010011001111000110011010000100111000100000000111001000110111111101011001010010001100100111000001100100011111110110110111011111111001111100000110100111010110100010001010011100010010000010110010001011011111001111010110100110101000010001010110100000100100010001100001010010100
Pair
\(Z_2\)
Length of longest common subsequence
6LTN_1,9NLE_1
177
4
6LTN_1,5TVK_1
167
5
9NLE_1,5TVK_1
146
4
Newick tree
[
6LTN_1:89.96,
[
5TVK_1:73,9NLE_1:73
]:16.96
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{656
}{\log_{20}
656}-\frac{220}{\log_{20}220})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6LTN_1
9NLE_1
155
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]