6LOM_1|Chains A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T|Calcium homeostasis modulator protein|Caenorhabditis elegans (6239)
>5GNX_1|Chains A, B|Beta-glucosidase|metagenome (256318)
>8ZDW_1|Chains A, K[auth C], L[auth H]|Hemagglutinin|Influenza A virus (strain A/Vietnam/1203/2004 H5N1) (284218)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6LOM_1)}(2) \setminus P_{f(5GNX_1)}(2)|=78\),
\(|P_{f(5GNX_1)}(2) \setminus P_{f(6LOM_1)}(2)|=112\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001001101100110001001101111100111001100101001010110100011111110111111110100001011011110100000010000101101110001111111111110110000000001011001110000011000100001001000100011010110100100101000101111111011111111000010000011000010000010000101110001001100010111100010000101101110100111101011110000001001101100001001101010100111000000
Pair
\(Z_2\)
Length of longest common subsequence
6LOM_1,5GNX_1
190
4
6LOM_1,8ZDW_1
170
4
5GNX_1,8ZDW_1
170
4
Newick tree
[
5GNX_1:91.78,
[
6LOM_1:85,8ZDW_1:85
]:6.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{796
}{\log_{20}
796}-\frac{329}{\log_{20}329})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6LOM_1
5GNX_1
166
140.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]