Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6LGA_1)}(2) \setminus P_{f(8FID_1)}(2)|=106\),
\(|P_{f(8FID_1)}(2) \setminus P_{f(6LGA_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010010000110111001101011000110010100100001011101011100100110111011110111001110110010010010000101001001100100111011101110010000001100010011000111110111010011101110011001110110100000000100111001010100111000110110111001101101011101101011000100100110110010000110011100001101001100100110000000110001110010101010110010001111101110101100100000100110111011001101111011110000001100100011011011011111111000100111001010100010101000101000010000110010010000011100000011111000001011000001000100001100100010100100010110000101100110000011110100000010110110101110101001001011100100001010110111101011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1039
}{\log_{20}
1039}-\frac{441}{\log_{20}441})=157.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6LGA_1
8FID_1
204
171.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]